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Abstract

Velleman proved that a mapping of IR to IR is continuous iff the images
of compact sets are compact and ones of connected sets are connected.
Arenas and Puertas generalized this characterization of the continuity to
mappings of locally connected first countable spaces to regular normal
spaces. We generalize Arenas and Puertas’ result.

Introduction.

In [AP] the following definition is given:

Given two topological spaces X and Y, we say that a family F C YX can be
characterized by images of sets if F = Ca g for some families A C IP(X) (note

that IP(X) denotes the power set of X) and B C P(Y), where Cap = {f €
YX: fA € B forevery A € A}.

The problem to characterize the continuity by images of sets was studied first
in [V] by Velleman that have shown that the set C(IR,IR) of all real continuous
functions on IR can not be characterized by images of sets.

In [AP] Arenas and Puertas have demonstrated (generalizing another Velle-
man’s rezult in [V] concerning C(IR,IR))(see Abstract) that, under some ad-
ditional hypothesis, two classes of sets are sufficient to characterize continuity
between two topological spaces. In fact, they have proved the following:

THEOREM AP. Let X be a locally connected first countable space and let Y
be a regular normal space. Then

C(X,Y)=CuxanCss

where A is the family of all connected sets and B is the family of compact sets.
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In the present paper we generalize Theorem AP to some different classes of
spaces, by generalizing the definition of set of mappings characterized by images
of sets.

Definition 1. Given two topological spaces X and Y and F ¢ G C Y. We
say that F can be characterized by images of sets with respect to G if F = CS,B
for some families A C IP(X) and B C IP(Y), where C§p = {f € G : fA €
B for every A € A}.

1. Continuity on ¢g-spaces.

Throughout the paper, "space” means topological T}-space. For terms and
undefined concepts we refer to [E].

Definition 2. A sequence {O,}nen of subsets of a space X is called a g-sequence
in X if for any sequence of points z,, € O,, (for n € IN) there exists a cluster point
(i.e., a point xq such that every its neighborhood meets infinitely many x,,’s).

Maybe the following lemma is known and its proof is given for reader’s conve-
nience.

LEMMA 1. Let {O,}nen be a g-sequence in a space X. Then:
(1) if U, C O, for every n € IN, then the {U,},cn is a ¢g-sequence too;

(2) if G = Npen Oy Is closed, then it is countably compact;

(3) if G = Npew On, all Oy, are open in X and clOy,,1 C O, for every n € IN,
then G is closed and for any neighborhood O of G there exists n such that
0, C O;

(4) if G = Npew On, all O,, are open in X, ¢lO, 1 C O,, and the points x,, € O,,
n € IN, are distinct then H = G U {z, : n € IN} is a countably compact
set.

Proof. (1) is evident.

(2) Let A be a countably infinite subset of G. If A has no accumulation point
in G then every point z € G has a neighborhood O, such that |0, NG| < 1.
Let f be a 1-1 mapping from IN onto A, then fn € O, for every n € IN but the
sequence {fn},en has no cluster point.

(3) Let O be a neighborhood of G. If there exists z,, € O,, \ O for every n € IN
then the sequence {z,},en has no cluster point (because every O, contains all
but finite elements of the sequence {z,},enw and X = OUU{X \ clO,; n € IN}).

(4) Let A be a countably infinite subset of H. If A has no accumulation point
in G, then every point # € G has a neighborhood O, such that |0, N A| <1 and
this intersection is one-point if and only if x € A. Hence, the union O = U,cq Ox
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is a neighborhood of G' and, by (2), O N A is finite. By (3), there exists n such
that O, C O. Then O, N A and A\ O, = AN ({z,, : m € N} \ O,) are finite.
This is a contradiction. O

Let us recall (see [M]) that a space X is said to be a g-space if for every x € X
there exists a g-sequence of neighborhoods of z.

Definition 3. A mapping f : X — Y between spaces X and Y is said to be
Gs-continuous at a point x € X if, for every neighborhood V' of fx, there exists
a Gg-set G in X such that r € G and fG C V.

A mapping is called Gs-continuous if it is Gs-continuous at any point of its
domain.

The set of all Gs-continuous mappings from a space X to a space Y will be
denoted by C5(X,Y).

Obviously C(X,Y) C Cs(X,Y) (where C(X,Y) consists of all continuous map-
pings from X to V).

Remark. If the space X has countable pseudo-character, any mapping of X
is Gis-continuous (since every singleton of X is a Gs-set).

THEOREM 2. Let f : X — Y be a Gs-continuous mapping from a locally
connected regular q-space X to a normal space Y. If f maps countably compact
sets in countably compact sets and connected sets in connected sets, then it is
continuous.

Proof. Suppose, by contradiction, that f is not continuous at some point xy €
X. Then there exists a neighborhood V' of fzq such that fO\ V # 0 for every
neighborhood O of xy. By regularity of Y, there exists another neighborhood W
of fxy such that ¢/lW C V. Furthermore, by using the normality of ¥ we can
obtain a sequence {V,},e of open sets of Y such that, for every n € IN:

i) ddW CV, CclV, CV and

i) clV, 1 C V.

Since f is Gg-continuous, there exists a Gs-set G of X such that o € G
and fG C W. Thus, there exists a sequence {G,},en of open sets of X such
that G = N,ew Gn. Since X is a g-space, there exists a ¢-sequence {O, }nen of
neighborhoods of .

Furthermore, by using the hypothesis that X is locally connected, it is not
restrictive to chose a sequence {Up, }nen of open connected sets such that

xg € Uy C cdUy, c GinNOy
and that, for every n > 1,

n n—1
€U, CclU, CG,N(O:N(T;

=1 =1



Hence, H = N,ew Un = Npen clU,, and so, H is a closed Gs-set of X.

Obviously xg € H C GG and so fH C W and, by hypothesis, every image fU,
is a connected set.

By the choose of V', we can find y, € fU, \ V (with n € IN). So, for every
n € IN, there is some z,, € U, such that fz, = y,.

Since y, € fU,\V C fU, \clV,, = fU,N(Y \clV,) and frg € W C W C V,,
it follows that the connected set fU, has non empty intersection both with the
open set V,, and Y \ V, and hence that fU,, NbdV;, # 0.

Let z, € U, be such that fz, € bdV,,.

Since, by construction, the family {bdV},},en is disjoint, the points fz, and
so the points z, (for n € IN) are distinct. Since z, € U, C O,, there exists a

point p € X such that every neighborhood of p contains infinitely many points
of {2z, }new. Evidently, p e N{V,: n€ N} = H.

By Lemma 1, the set C' = H U {z,}nen is countably compact and, by the
hypothesis, the set fC'is countably compact too.

But, for every n € IN, we have fz, € bdV,, = clV, \ V,, C clV, \ W and so no
point of fH does not belong to the closure of the set S = {fz,: n € IN}.

Thus S is a closed subset of fC' and so S is countably compact.

But, for every n € IN, the point fz, is isolated in S. In fact, fz, € bdV, =
Vo \' Vi, C V1 \ clV,41. Hence the open set T =V, 1\ ¢V, 11 doesn’t meet
both fz; with i =0,1...n—1 (because they do not belong to V;,_1) and fz; with
i > n+ 1 because they belong to clV, 1, i.e. TNS ={fz,}.

Thus S is an infinite discrete space and so it can not be countably compact. O

COROLLARY 3. A Gs-continuous mapping from a locally connected regular
g-space to a normal space is continuous if and only if it maps countably compact
sets in countably compact sets and connected sets in connected sets.

The previous corollary can be reformulated in the following way:

If X s a locally connected reqular q-space and Y is a normal space, then
C(X,Y)=C3ANCEp=CaanCppnCsX,Y)

where G = C5(X,Y), A is the class of countably compact sets, B is the class of
connected sets.

2. Continuity on sequential spaces.

LEMMA 4. Every mapping f :wy+ 1 — Y from the simplest infinite compact
space wy + 1 to a space Y that maps infinite compact sets in infinite Hausdorff
compact sets is continuous.



Proof. Suppose, by contradiction, that f : wy+1 — Y is not continuous. Since
every point n € wy is isolated, it necessarily follows that f is not continuous
at the point wy. So, there exist a neighborhood O of fwy and an infinite set
K C wp such that fK N O = (. The set K U {wp} is infinite compact and, by
hypothesis, its image f (K U {wo}) is Hausdorff infinite compact too. Hence, the
set fK = f(KU{wp})\ O is also Hausdorff compact and infinite. Let yy be a
cluster point of fK. Then fK \ {yo} is infinite and non-closed subset of fK and
K' = K\ f 'y is infinite and so K'U{wy} is infinite compact. So, by hypothesis,
C = fK'U{fwy} is infinite compact too. Since fK'N O = (), the space fK' is
closed in C' and so is compact. It follows from this that fK’ must be closed in
the Hausdorff space fK. A contradiction which proves our lemma. O

As consequence of the previous Lemma, we have the following:

THEOREM 5. A mapping from a sequential space to a Hausdorff space (even
to a space in which all countable compact subspaces are Hausdorff) is continuous
if it maps infinite countable and compact sets in infinite compact sets.

Proof. By Lemma 4, restrictions of f to subspaces of X homeomorphic to wy+1
are continuous. Since X is sequential, f is continuous. O

COROLLARY 6. A mapping from a sequential space to a Hausdorff space
(even to a space in which all countable compact subspaces are Hausdorff) which
fibres are discrete is continuous if and only if it maps infinite countable and
compact sets in infinite countable and compact sets.

Proof. 1f f is continuous then images of all countable infinite compact sets are
compact and they can not be finite because no fibre of f does not contain wg+ 1.
The second part of the corollary follows from Theorem 5. ad

COROLLARY 7. Let X be a sequential space, Y a Hausdorff space and
D(X,Y) consist of all mappings of X toY which fibres are discrete. Then

C(X,Y)ND(X,Y)=CaaND(X,Y),
where A is the class of infinite countable compact sets.

COROLLARY 8. A one-to-one (even injective) mapping from a sequential
space to a Hausdorff space (even to a space in which all countable compact sub-
spaces are Hausdorff) is continuous if and only if it maps countable and compact
sets in compact sets.
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